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Abstract

The characteristic forms on the bundle of connections of a principal bundle M of degree
equal to or less than diM, determine the characteristic classe®odind those of degrde+ dim M
determine certain differentid&d-forms on the space of connectiodson P.

The equivariant characteristic forms provide canonical equivariant extensions of these forms, and
therefore canonical cohomology classes.4fGalf P. More generally, for any closefl € £2" (M)
and f € Z¢, with 2k + r > dim M, a cohomology class ad/Gall P is obtained. These classes are
shown to coincide with some classes previously defined by Atiyah and Singer.
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1. Introduction

Letw : P — M, beaprincipaG-bundle and lep : C(P) — M be its bundle of connec-
tions. LetI,f be the space of Weil polynomials of degiefor G. The principalG-bundle
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C(P) xuy P — C(P) is endowed with a canonical connectién(see below for the de-
tails), which can be used to obtain, for evefy IkG, a characteristic Rform on C(P),
denoted byc ¢ (F) = f(IF, .. K F) (e.g., sed11]), whereF is the curvature of\. More-
over, such a form is closed and ARdinvariant. AsC(P) is an affine bundle, the map
p* : H*(M) — H*(C(P)) is an isomorphism. The cohomology classMrcorresponding
to ¢ ¢(IF) under this isomorphism is the characteristic clasB absociated th Hence, the
characteristic forms o@(P) determine the characteristic classedbiout the characteristic
forms contain more information than the characteristic classes; for example, the character-
istic classes of degre& 2 n vanish, although the corresponding forms do not necessarily,
as dimC(P) > dim M. Precisely, the principal aim of this paper is to provide a geometric
interpretation of such characteristic forms of higher degree.

This is based on the following construction. LEt— N be an arbitrary bundle over
a compact, oriented-manifold without boundary. We define a map: 2"t*(J"E) —
QK (E)) commuting with the exterior differential and with the action of the group
Projt(E) of projectable diffeomorphisms which preserve the orientatioriMorHence,
if « € 2"K(JTE) is closed, exact, or invariant under a subgrgug Proj*(E), then the
form F [«] enjoys the same property.

Applying this construction to the bundIl€(P) — M, for any characteristic form
cy(F) with 2k > n, we obtain a closed and G&invariant (% — n)-form on the space
A = TI'(M, C(P)) of connections orP. More generally, as proved ifi1], the space of
GauP-invariant forms orC(P) is generated by forms of typg (F) A p* g, with 8 € £2*(M).
So, givenf € I,? and a close@@ € £2"(M), such that 2 + r > n, we have a closed and
GauP-invariant (% + r — n)-form on A given by

Cyp = Flcs(F) A p*Bl € 2FF7(A). (1)

As A is an affine space, these forms are exact, and the cohomology classes defined by them
on A, vanish; but in gauge theories—because of gauge symmetry—it is more interesting
to consider the quotient spagk/GauP instead of the spacd itself. Although the forms
(1) are GawP-invariant, they are not projectable with respect to the natural quotient map
A — A/GauP. Hence they do not define directly cohomology classegdpBauP. Con-
sequently, we are led to consider another way in order to obtain cohomology classes on the
guotient from these forms. As is well known, the cohomology of the quotient manifold by
the action of a Lie group, is related to the equivariant cohomology of the manifold, e.g.,
see[19]. Below, we show that the usual construction of equivariant characteristic classes
(e.g., sed6,7,9]) when applied to the canonical connectitinprovides canonical AWR-
equivariant extensions of the characteristic forms. By extending theZtapequivariant
differential forms in an obvious way, this result allows us to obtain B&guivariant ex-
tensions of the formél); seeTheorem 1@elow. These extensions determine cohomology
classes in the quotient spaggGalP P, where GaBlP ¢ GauP is the subgroup of gauge
transformations preserving a fixed point € P. We also prove that such classes coincide
with those defined ifi3].

As is well known (e.g. seR]), an equivariant extension of an invariant symplectic two-
form is equivalent to a moment map for it. Hence, if the faithis of degree two o,
then the GatP-equivariant extension that we obtain, defines a canonical moment map for
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the symplectic action of the gauge group.dnand we show that these symplectic forms
and moment maps coincide with those defineflit3,21]

Finally we show how our constructions lead to conservation laws for the Chern—Simons
terms considered if18].

2. The bundle of connections and the canonical connection

If 7: P— M is a principalG-bundle, its bundle of connections is an affine bundle
p . C(P) - M modelled over the vector bundi&*M & ad P, such that there is a bijec-
tion between connections ¢hand the sections dE(P) (e.g. se10,16,22). The natural
projectionp : P = C(P) x P — C(P) onto the first factor induces a principatbundle
structure oveC(P), and we have the commutative diagram
P 2 p
7l $ 7
cp) L M

The bundleP has a canonical connectidne £21(P, g) characterized by,
A(x).0)(X) = Au(p«X) (2)

for every connectio onP, x € M, u € 7 1(x), X € T(oa(x),u)P, and wherery : M —
C(P) is the section corresponding £0

Remark 1. It can be shown (sefl0Q]) that the bundlep= P — C(P) is isomorphic to
J1P — (J1P)/G and, under this identification, the canonical connectiarorresponds to
the structure form off1P.

The canonical connection enjoys the following properties (e.g[1s8E

(1) A isinvariant under the natural action of the group Rudf automorphisms oP.
(2) For every connectioA on P, we haveo’; (A) = A, whereo, : P — P is defined by
oa(u) = (oa(x), u), with x € M, u € 7~ (x).

LetF bethe curvature . If f € IkG is a Weil polynomial of degrelefor G, we define the
characteristic form associatedftas the 2-form onC(P) defined byc ¢(F) = f(F, ..., F).
This form has the following properties:

(3) cy(IF) is closed.
(4) cs(F) is invariant under the action of the group Auon C(P).
(5) For every connectioA onP we haveo’; (c¢(F)) = f(Fa, ..., Fa).

As a consequence of (3) and (5) and the fact that the space of connections is an
affine space, we obtain the well-known result of Chern-Weil theory that the cohomol-
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ogy class [(Fa, ..., F4)] € H¥*(M) is independent of the connectidn and is it called
the characteristic class associatedftdn other words, the map’ is an inverse of
p* H*(M) — H*(C(P)), and under this isomorphism the cohomology class i)
corresponds to the characteristic clasPafssociated tb(e.g. seg11,22)).

The space of connectiond is an affine space modelled oveX}(M, adP). Hence,
we have the identificatioff, A ~ $2X(M, ad P) for every A € A. Also, C(P) is an affine
bundle modelled over the vector bundléM ® adP. So, for everya € 2%(M, adP) C
r(c(p), T*M ® ad P) we have a vertical vector field, € XV(C(P)).

Lemma 2. For everya, b € 21(M, ad P), we have
iXaIF = p*a, iXhiX,lF =0.

Proof. It follows from the formula (5.8) if10]. O

If Ag, A1 € A, defined; = (1 —1)Ag + tAr1anda = A1 — Ag € 2Y(M, adP). The tan-
gent vector to the curvey, (x) in C(P) is X,(o4,(x)) for anyx € M, and hence we recover
the usual transgression formula

1 1
cp(Fay) —cp(Fap) =d (,/(.) U:t(ixHCf(F)) dt) =d (k/o fa, Fa,, ..., Fa,) dt).

Given a connectiodg onP, p* Ag is a connection off. As p* Ag andA are connections
on the same bundle, definiag = A — p*Ag € 21(C(P), g), A; = (1 — 1)p* Ao + rA and

1
n/(Ao) = k /O Flao, Fa. ... Fa)d,

we havec ¢ (F) — ¢ ¢(Fprao) = dnr(Ag). If 2k > n, thenc y(Fp=4,) = p*cr(Fa,) = 0, and
hencec ¢(F) = dn #(Ao).

3. Equivariant characteristic forms
First, we recall the definition of equivariant conomology in the Cartan model (e.g. see

[5,19)). Suppose that we have a left action of a connected Lie ggaupa manifold\, i.e.
a homomorphism : G — Diff( N). We have an induced Lie algebra homomorphism

LieG — X(N), X Xy= % o(exptX)).
0

1=

Let 26(N) = (S*(Lie G*) ® 22°(N))Y = P*(Lie G, £2°(N))Y be the space of-invariant
polynomials on Li&j with values in2*(N). We define the following graduation: deg(=
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2k + rif @ € P¥(Lie G, 22"(N)). Hence the space @Fequivariant differentiat-forms is

QLN = P (Pi(Lieg. 2/ (V)X .

2k+r=q

Letd. : QL(N) — !22+1(N) be the Cartan differential

(dea)(X) = d(a(X)) — ixya(X), VX e lLiegG.
As is well known, on(2z(N) we have ¢.)? = 0. Moreover, the equivariant cohomology (in
the Cartan model) dfl with respect of the action @ is defined as the cohomology of this

complex, i.e.,

ker(d, : 2L(N) — 257(V))
Im(d. : 2471 (N) — Q4N))

Hi(N) =

Definition 3. Given a closed ang@-invariant forme € £29(M), an equivariant differential
form o € 2 (M) s said to be -equivariant extension @ if d.o” = 0 ande®(0) = w.

In general, there could be obstructions to the existence of equivariant extensions (e.g.,
see[24]) but, as we will see, the classical construction of equivariant characteristic classes
really provides canonical equivariant extensions for the forms we are dealing with.

Next, let us recall the relationship between equivariant conomology and the cohomology
of the quotient space. If the action@on N is free andv/G is a manifold, thenv — N/G
is a principalG-bundle. LetA be a connection on this bundle. The following map is a
generalization of the Chern-Weil homomorphism:

ChW, © 25(V) — (2°(N))basic™ 2° (g) &> (@(Fa))non

wherefhor denotes the horizontal componentd€ £2°(N) with respect to the connection
A. We have the following proposition.

Proposition 4. If o € 25(N), thenChWy (dca) = d(ChWy («)).
Proof. We refer the reader t®, Theorem 7.34] O

Theorem 5. The induced map in cohomolo@hWy : H(N) — H*(N/G)is independent
of the connection A chosgand is denoted by

ChWy : HY(N) — H* (g) .
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Proof. The result quickly follows by working on the bundle of connections. We use the
notations introduced iSection 2by settingP = N, M = N/G and denoting by : P —
M the quotient map. Let € Q(qj(P) be an equivariang-form such that/.« = 0. Recall

that p*(a) belongs to_Q’ZJ(IP’) as p is a G-equivariant map. ByProposition 4 the form
ChWy (p*a) € 2*(C(P)) is closed, and from the formul&) we obtain

0’4 (ChWy (p*ar)) = ChW (cv).
Again the result follows as the space of connections is contractifie.
Remark 6. If G is compact and connected ChWs an isomorphism (e.g. s¢E9]).

The definition of equivariant characteristic classes of Berline and Vergnfs(3e#) can
be introduced as follows. Let : P — M a principalG-bundle and let us further assume
that a Lie groupg acts (on the left) orP by automorphisms of this bundle. L&tbe a
connection orP, which isinvariant under the action of.

For everyf e IkG the G-equivariant characteristic form associated &amdA, clf(Fg) €
22%(M), is defined by

(D) = 1 (Fa = AXp), & Fa = AXp)
k [k . .
= (-1 (l. ) f(Fa. G Fa, AXp), U1 A(Xp))
i=1
for everyX € LieG.

Proposition 7. We have

(1) Cf(Fg) is aG-equivariant extension afg(F,).

(2) The equivariant cohomology cIas%(P) = [cf(F§)] € H¥ (M) is independent of the
G-invariant connection Aand is called th&j-equivariant cohomology class of P asso-
ciated to f

Proof. Seg[9,7]. O

Applying the construction of equivariant characteristic forms to the buRidie C(P)
with the AutP-invariant connectior\, we obtain the AuP-equivariant characteristic form
cp(FAULPY e @2 (C(P)), with an AutP-equivariant extension of (F). If G C AutP
is any subgroup of the automorphism group, we have the correspogeamivariant
characteristic form

¢ f(F9) = ¢ (FAP) | Lie g.

The following proposition easily follows from the formu(a).
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Proposition 8. If G acts onz : P — M by automorphisms of, and A is ag-invariant
connection on Pthen we have (c /(F9)) = ¢ /(F3).

Remark 9. In this way, we obtain the analogous situation to that of the ordinary char-
acteristic classes; see the last paragrap8ention 2 Moreover,Proposition 8provides

a very simple proof ofProposition 72), as the space df-invariant connections is an
affine subspace; more precisely,Afis a G-invariant connectiong’; is the inverse of

p* i H3(M) — HEZ(C(P)) (hencep™ is an isomorphism). Under this isomorphism the
G-equivariant cohomology class o}(IFg) corresponds to thg-equivariant characteris-

tic class associated tio Moreover, as in the case of ordinary characteristic classes, the
equivariant characteristic forms contain more information than their corresponding charac-
teristic classes. For example,$®ction Swve will use this forms in the cagg= GauP to

find equivariant extensions of the forr(f§.

The analog of Proposition 5 for the equivariant characteristic classes, is the following
proposition.

Proposition 10. Assume that acts freely on P and Mand that the quotient bundle
g : P/G — M/G existsthen

ChWi (c§(P)) = ¢ (g) .

Proof. Wedenotebyp : P — P/G,qp : M — M/Gthe projections. Lefi; a connection
on the principals-bundlerg : P/G — M/G, andA, a connection in the principg-bundle
M — M/G. Clearly A] = ¢} A1 is a G-invariant connection on the princip@-bundle

P — M, and for everyX € Lie G we haveA’(Xp) = 0. So, the equivariant characteristic
class associated ) andf is the basic formrf(FAg/l) = cf(Fay).

From the very definition of Ch\),, it is clear that
ChWa,(cr(Fay)) = cr(Fay)

and hence the result follows.[

4. Forms in I'(E) induced by forms in J"E

Letg: E — M be a locally trivial bundle over an oriented, connected, and compact
n-manifold without boundaril. We denote by"(E) the space of global sectionsBfand
we assume that it is not empty. We considgFE) as a differential manifold; for the details
of its infinite-dimensional structure, s§20]. For anys € I'(E) there is an identification
T, (E) ~ I'(M, s*V(E)). We denote by E ther-jet bundle ofg, and by ProjE) the group
of projectable diffeomorphisms @&, i.e. ¢ € Diff( £) such that there exist € Diff( M)
with g o ¢ = ¢ o q. We denote by Prdj(E) the subgroup of elemengse Proj(E) such that
¢ e Diff T(M), the group of orientation preserving diffeomorphisms.
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We denote by prof) c X(E) the Lie algebra of projectable vector fields, which
can be considered as the Lie algebra of Fpj(The group Prof) acts onI"(E) by
(@,8) = dr@E)(s) =doso 9‘1. At the Lie-algebra level, every projectable vector field
X € proj(E) determines a vector field () € X(I'(E)) on I'(E). Given ¢ € Proj(E)
(resp. X € proj(E)) we denote by (resp.X®)) its prolongation toJ”(E). We recall
that¢")(/:s) = gy (@r(s))-

The evaluation map

ev, .M xTI'(E)y— J'E, (x,8) > Jjis

is equivariant with respect of the action of P&jon M x I'(E) and J"E. So, for any
X e proj(E), denoting byX € X(E) its projection toM, we have

eV (X, Xr(p) = X©. (3)

We define a map
F: 2" E) — QK (E))
by the formula
Fla] = /M evVia € QNI (E)), (4)

where [, denotes the integration over the fiberdfx I'(E) — I'(E). If « € QX(JTE)
with k£ < n,we setF[a] = 0.

Proposition 11. For anya € 2"%(J"E), we have
FladuXn o X = [ (79 g1y ©
M
for everys € I'(E), X1,..., Xx € T,TE ~ I'(M, s*V(E)).

Proof. The result follows from the definition of [«] and the formula(3) applied to
vertical vector fields. [

The following proposition follows from the definition oF and the properties of the
integration over the fiber.

Proposition 12. For everya € 2"T%(J"E), ¢ € Projt(E), and X € proj(E) we have

(@) F [do] = dF[a],

(b) FI(D) el = 5y F lal,
(€) Flixwe] = in(E)}-[O‘]y
(d) FILxoel = LxpgF o]

Remark 13. If « € 2"~1(J"E), the conditionl2(a) meansF [da] = 0.
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Now, assume thaj is a subgroup of Proj(E). If « € P4(Lie G, 2"X(E)), the compo-
sition

Lie G % @+ (" E) L5 2% (r(E)
defines an elemetf [o] of P?(Lie G, 2%(I"(E))); that is, forX e Lie G we have
(F [a(X) = F [«(X)].

By Proposition 18b) if « is G-invariant,F [«] is alsoG-invariant, and so the map extends
to a map betweeg@-equivariant differential forms

F: QT E) > QUI(E)).

Proposition 14. For everyx € .Q’é*k(J’E) we haveF[d.«] = d.F[«]. Hencewe have an
induced map in equivariant cohomology. HS“‘(J’E) — Hg(F(E)).

Proof. If a € .Q’é*"(ﬁE) andX e Lie G, then fromProposition 12ve have
(Fldea])(X) = Fldca(X)] = Fld((X))] — Flixeyo(X)]
= dF[a(X)] = ixpp Fla(X)] = (dFle])(X). O

5. Applications

In this section we combine the resultsRdctions 3 and.4As remarked in Section 1, in
Gauge theories Gaetinvariant forms are specially interesting, so we focus on these forms.
In[11] itis proved that the space of GReinvariant forms is generated by the forms of type
cr(F) A p*B, with f € IkG andg € £2"(M). We assume that is closed and 2+ r > n.

By applying the magF to ¢ () A p* B we obtain

Crp = Flep(F) A p*Bl € 2%F71(A).

By Proposition 12his form is closed and Gdinvariant.
Taking Lemma 2into account, it is easy to obtain the expressiorCgg. We have the
following proposition.

Proposition 15. Letg =2k +r —n.Foray, ..., a4 € 2Y(M, ad P) we have

k
(Cﬁﬂ)A(al, . ,aq) = (q) /M f(al, e, dg, Fyu, ("T.kfr, FA) A B.
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By virtue of Proposition 7the GauP-equivariant characteristic formf(IFGa”P) is an
equivariant extension af;(IF). Also p*g is a closed GaR-equivariant differential form,
because it is closed and basic. &ﬂFGa“P) A p*B is a GalP-equivariant extension of
c¢(F) A p*B. We thus obtain the following theorem.

Theorem 16. TheGauP-equivariant form
Chy = Flep(F) A p*Bl € 28505 (A) (6)
is aGauP-equivariant extension af ;.

We have thus found a canonical Gaequivariant extension af .4, as said in Section 1.

Let X € gauP = 2°(M, adP) ~ £23,(P, g), and Xp € X(P) the vector field corre-
sponding to the action of G&iin P. We have

Aea().)(XP) = Au(psXp) = Au(Xp) = X(u).

So0,A(Xp) = p*X, and hence
k
crFOY(X) = £ (F - p*X, b F = p"X) = 3 4(F. x), (7)
i=0

. |k . .
wherec!,(F, X) = (~1) ( ) F@, R XL pEX).
1

The conditiond,.c ;(F¢37) = 0 is equivalent to
def(F) =0,  dc(F, X) = ixcpc; '(F, X), i=1...k (8)

Using(7) andProposition 15t is easy to obtain the expression G g IN Example 19
of Section 5.2we detail such expression in a simple case. Also{df) = Tr(expX) we
obtain the equivariant forms defined[Ril, Section 6jas a particular case.

5.1. Forms ind/Gal’ P

Let Gal P c GauP be the subgroup of gauge transformations acting as the identity on
the fiber over a fixed pointy € M. Then GallP acts freely ond and the quotientl/Galf P
is well defined (e.g. s€@3,12).

By virtue of Theorem 5 the GadP-equivariant differential forr’rC’;f/3 determines a
cohomology class ’

A
Chwy(c* ) e H2k+’_"( )
AlChp) Galfpr

To obtain a representative of this class it is necessary a connection on the Bunsle
A/Gal P. The construction of this connection is a standard fact in gauge theories (e.g. see
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[12]): given a Riemannian metrigin M there is a connection id — .A/Gal P given by
the decomposition

TaA ~ 2Y(M, adP) ~ Im(ds) @ ker(d%).
The space Imi,) is the tangent space to the orbits, and #&) (s the horizontal comple-
ment. The expression of its corresponding connection form is

A = Gady, 9)

whereG, = (dj o dx)~1is the Green function of the Laplacian
A8 = d% ody - 2°(M, adP) — 2°(M, ad P).

We denote by§ the curvature ofX.

Next, we relate our classes ChMC* ) to the constructions if8]. Consider the principal
G-bundleP x A — M x A. The group GaliP acts onP and onA. Taking the quotient,
we obtain a principaG-bundle

PxA A
= — M .
Q Gabp <GaLPP)

If £ €Z¢ and [g] € H'(M), we have a class

cr(Q A8l € H (M x (ﬁ)) :

Integrating oveM we obtain the class

/(6D = /M ¢H(Q) ALA] € HEHTn (G :pp) .

Theorem 17. For every f € If and every close@ € £2"(M) with 2k 4+ r > n, we have

ChWa(C% ) = 4 ([B)).
Proof. The evaluation map extends to a morphism of princ{pddundles
PxA &op

\: 7
M x AL c(p)

whereev(u, A) = (o4 (x), ) for u € 7~1(x). Hencegv*(A) is a connection o x A —
M x A, ev*(cr(F)) gives its characteristic classes, and(ey(IFGaLpP ), f € IkG , are its
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Gal P-equivariant characteristic forms. Byroposition 1Ghese equivariant characteristic
forms determine the characteristic classes of the quotient bigéte M x (A/GalP),
i.e., we have

ChWiars4(ev*(c (F2PY) = ¢ £(Q).

As the connection o x A — M x (A/Gal P) is given by the connectio9), the co-
homology class. ¢([8]), is represented by the form

([ crtev@-sns) . (10)
M hor

From(4) and(7) we have
Cy(X) = /M eV (c /(FCPP (X)) A p*B) = /M c eV (F) — X) A B.

So ChWA(C‘; ﬂ) is also represented by the fort0). O

Remark 18. The construction of the classgs ([ 8]) appears i3] in order to compute the
Chern character of the index of families of Dirac operators and to apply them to the study
of anomalies in gauge theories. These classes also appear in other constructions in gauge
theories, like the definition of Donaldson invariants (EE®), Topological Quantum Field
Theory (8,4]), etc.

It is remarkable that we obtain these classes only by studying®Giawariant forms on
C(P) and its equivariant extensions.

5.2. Moment maps

Example 19. LetM be a surface, an@ = U(k). If f(X) = (1/879)tr(X?), X € g, thenthe
corresponding characteristic classMwanishes by dimensional reasons, but the character-
istic form ¢ +(F) € £2*C(P)) does not. From our constructions, this form defines a closed
and GalP-invariant two-form onA, Cy = F [c(IF)]. By Proposition 15and formula(7)
fora, b € 2Y(M,adP), andX € gauP = 2°(M, ad P), we have

1

1 1, 1 .
e (FEFNX) = o5t (F AT) = 5t(p X ) + —tr(p* X)?),

(Cr)ala, b) = 4—712 /M tr(a A b),

1 1
(CH(X))ala. b) = e /M tr(a A b) — e /M tr(X - Fa).
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Hence,C s coincides with the natural symplectic structure.drmiefined in[1]. Moreover,

in the case of a two-form, it is equivalent to give an equivariant extension of the form and a
momentmap (e.g. s¢2]). Hencecfi defines a canonical moment m@ybor this symplectic
structure, given by

1
m: A— (gauP)*, ma(X) = —m/ tr(X - Fa).
M

Under the pairing
2°(M, adP) x 2°(M, adP) — R, ., X) — (n, X) = —4—7172 fM tr(X - n)
(11)
Fhis moment map corresponds to the curvattife and it thus coincides with that defined
) [,ﬂéo, we haven~1(0) = {A € A : F4 = 0}, and by symplectic reduction we obtain the

moduli space of flat connections, and our form gives rise to the symplectic structure on
this space.

More generally, let#, o) be a symplectic 2-manifold. Then the form

cr(F) Aot e @¥F2(C(P))

1
(n—1)!

defines a symplectic structure gh and the equivariant extension provides a moment map
for it, which, in particular, coincides with that obtained[{tB, Proposition 6.5.84nd[21,
Section 3]

5.3. Chern-Simons terms

Suppose thaM has dimension 2— 1 and f € ZV. Then c(F) € 2%(C(P)) de-
fines a first order locally variational operator (§&4]). Let i : 2* — 2°*(J1C(P)) de-
note the horizontalization operator. As we hav€l) = dn s(Ao), the forma(n r(Ao)) €
2%=1(JY(c(P))), is a Lagrangian for this operator, and hence this operator is globally
variational.

We know thatc ¢(IF) is GauP-invariant, buty (Ao) is not invariant, because it depends
on the connectiom . However, by virtue of8) for everyX € gauP, we have

Lxcpyns(Ao) = ixcedn (Ao) + dixcpyn,(Ao) = ixcpyc s (F) + dixepyn (Ao)
= d(c7(F. X) + ixcpmn,(A0)).

and hence. x .1 r(Ao) is exact. As it is shown iffil8] this condition leads to a Noether
conservation law. In fact, the conserved currenf(X) = h(c}(IF‘, X)), because by the
results in[14] Ais an extremal connection if and onlydf; (iyc ¢(IF)) = 0, VY € X(C(P)),
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and in this case, for any € gauP, we have
1 1 .
doy(c;(F, X)) = ojyd(c(F, X)) = 04 (ixc(pycr(F)) = 0.

More generally, iff I,? the formpB € £2"(M) is closed, and dim{f) = 2k + r — 1, the
formcy(IF) A p*B defines afirst order globally variational operator with Lagrangian density
A = h(ny(Ao)) A p*B and with conserved curref{X) = h(c}(IF, X)) A p*B.

The formc ¢(F) defines a closed and GReinvariant one-formF [c ¢(FF)] on the space
of connectionsA. This form is also horizontal, because for evérye gauP we have

ix ,F [er(B)] = Flixep e r(B)] = Fldey(X, F)] = 0.
So, Fcy(IF)] projects to a closed one-form, on the spaced/Gal’ P. We have
Flep(®)] = Fldny(Ao)] = dF [nr(Ao)]-

HenceF [c/(F)] is the exterior differential of the functioff [ r(Ao)] € £2°(A). Itis easy
to see that the one-formn; € 2%(A/GalP P) is exact if and only if the functiodF [1 +(Ao)]
is Galf P-invariant. We have

LxF [n7(A0)] = F [Lxcns(A0)] = F [d(c}(F. X) + ixcn,(Ao)] =0,

and so this functionis invariant under the action of the connected component with the identity
in GauP. But in general it is not invariant under the action of the full group Ga(as it

is shown in the following example), and in this casgedefines a non-trivial cohomology
class on4/Gal P.

Example 20. Suppose that = SU(2), f = (1/4n?)det is the polynomial corresponding
to the second Chern class avds a three-manifold. Then the bund®as trivial P = M x
SU(2),A = 2Y(M, g) and GawP = C*(M, SU(2)). If Ag is the connection corresponding
to the product decomposition, then(Ao) is the classical Chern—Simons Lagrangian and
forany A € A we have

F[nr(Ao)la =/Mo;;(nf(Ao))=—8—7112 M(A/\dA+§A/\A/\A>.

If : M — SU(2) is a gauge transformation, it is a classical result [8pahat
Fnr(Ao)lg.a = F [ng(Ao)la — S(¢),
where S(p) is the winding number of the map. As SU(2) is connected, every gauge

transformation is homotopic to an element of &BuHence there are elements: GalP P
with S(¢) # 0, andF [ £(Ao)] is not Gad P-invariant.
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6. Concluding remarks

1. The Berline—Vergne definition of equivariant characteristic classes supposegthat a
invariant connection is given. Note however that, independently of the existergte of
invariant connections, thg-equivariant characteristic forms always exisi@{®) (since
the canonical connection éinvariant), and the existence Gfinvariant connections is
needed only in order to obtafirequivariant classes dvi. We hope that our construction
could be useful in the study of equivariant characteristic classes for non-compact Lie
groups, where the existence of invariant connections is not guaranteed in general, and
the analysis is much more involved, e.g., EE4.

Moreover, inSection 5ve have used Gaerequivariant characteristic forms. From the
classical point of view of equivariant characteristic classes this procedure is meaningless
as this group acts trivially oM and also there are no GReinvariant connections.

2. The usefulness of the mé&plies in the fact that it provides a general procedure to obtain
results about (equivariant) differential forms and cohomology classes on the infinite
dimensional manifold”(E) by working on a finite dimensional jet bundle. Note that,
as in this paper we only consider forms on the 0-jet bundle (that i) it could be
thought that the consideration of jet bundles is unnecessary; but, for exanipté, we
study the analogous results in the case of Riemannian metrics, and in this case we need
to work with forms in the first jet bundle. In fact, there is a close relation between the
mapF and the variational bicomplex, that we will analyze in a forthcoming paper.
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