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Abstract

The characteristic forms on the bundle of connections of a principal bundleP → M of degree
equal to or less than dimM, determine the characteristic classes ofP, and those of degreek + dimM

determine certain differentialk-forms on the space of connectionsA onP.
The equivariant characteristic forms provide canonical equivariant extensions of these forms, and

therefore canonical cohomology classes onA/Gau0P . More generally, for any closedβ ∈ Ωr(M)
andf ∈ IGk , with 2k + r ≥ dimM, a cohomology class onA/Gau0P is obtained. These classes are
shown to coincide with some classes previously defined by Atiyah and Singer.
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1. Introduction

Letπ : P → M, be a principalG-bundle and letp : C(P) → M be its bundle of connec-
tions. LetIGk be the space of Weil polynomials of degreek for G. The principalG-bundle
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0393-0440/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2004.09.005
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C(P) ×M P → C(P) is endowed with a canonical connectionA (see below for the de-
tails), which can be used to obtain, for everyf ∈ IGk , a characteristic 2k-form on C(P),
denoted bycf (F) = f (F, . . .(k,F) (e.g., see[11]), whereF is the curvature ofA. More-
over, such a form is closed and AutP-invariant. AsC(P) is an affine bundle, the map
p∗ : H∗(M) → H∗(C(P)) is an isomorphism. The cohomology class inM corresponding
to cf (F) under this isomorphism is the characteristic class ofP associated tof. Hence, the
characteristic forms onC(P) determine the characteristic classes onM, but the characteristic
forms contain more information than the characteristic classes; for example, the character-
istic classes of degree 2k > n vanish, although the corresponding forms do not necessarily,
as dimC(P) > dimM. Precisely, the principal aim of this paper is to provide a geometric
interpretation of such characteristic forms of higher degree.

This is based on the following construction. LetE → N be an arbitrary bundle over
a compact, orientedn-manifold without boundary. We define a mapF : Ωn+k(JrE) →
Ωk(Γ (E)) commuting with the exterior differential and with the action of the group
Proj+(E) of projectable diffeomorphisms which preserve the orientation onM. Hence,
if α ∈ Ωn+k(JrE) is closed, exact, or invariant under a subgroupG ⊂ Proj+(E), then the
formF [α] enjoys the same property.

Applying this construction to the bundleC(P) → M, for any characteristic form
cf (F) with 2k > n, we obtain a closed and GauP-invariant (2k − n)-form on the space
A = Γ (M,C(P)) of connections onP. More generally, as proved in[11], the space of
GauP-invariant forms onC(P) is generated by forms of typecf (F) ∧ p∗β, withβ ∈ Ω∗(M).
So, givenf ∈ IGk and a closedβ ∈ Ωr(M), such that 2k + r ≥ n, we have a closed and
GauP-invariant (2k + r − n)-form onA given by

Cf,β = F [cf (F) ∧ p∗β] ∈ Ω2k+r−n(A). (1)

AsA is an affine space, these forms are exact, and the cohomology classes defined by them
onA, vanish; but in gauge theories—because of gauge symmetry—it is more interesting
to consider the quotient spaceA/GauP instead of the spaceA itself. Although the forms
(1) are GauP-invariant, they are not projectable with respect to the natural quotient map
A→ A/GauP . Hence they do not define directly cohomology classes onA/GauP . Con-
sequently, we are led to consider another way in order to obtain cohomology classes on the
quotient from these forms. As is well known, the cohomology of the quotient manifold by
the action of a Lie group, is related to the equivariant cohomology of the manifold, e.g.,
see[19]. Below, we show that the usual construction of equivariant characteristic classes
(e.g., see[6,7,9]) when applied to the canonical connectionA, provides canonical AutP-
equivariant extensions of the characteristic forms. By extending the mapF to equivariant
differential forms in an obvious way, this result allows us to obtain GauP-equivariant ex-
tensions of the forms(1); seeTheorem 16below. These extensions determine cohomology
classes in the quotient spaceA/Gau0P , where Gau0P ⊂ GauP is the subgroup of gauge
transformations preserving a fixed pointu0 ∈ P . We also prove that such classes coincide
with those defined in[3].

As is well known (e.g. see[2]), an equivariant extension of an invariant symplectic two-
form is equivalent to a moment map for it. Hence, if the form(1) is of degree two onA,
then the GauP-equivariant extension that we obtain, defines a canonical moment map for
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the symplectic action of the gauge group onA, and we show that these symplectic forms
and moment maps coincide with those defined in[1,13,21].

Finally we show how our constructions lead to conservation laws for the Chern–Simons
terms considered in[18].

2. The bundle of connections and the canonical connection

If π : P → M is a principalG-bundle, its bundle of connections is an affine bundle
p : C(P) → M modelled over the vector bundleT ∗M ⊗ adP , such that there is a bijec-
tion between connections onP and the sections ofC(P) (e.g. see[10,16,22]). The natural
projectionp̄ : P = C(P) ×M P → C(P) onto the first factor induces a principalG-bundle
structure overC(P), and we have the commutative diagram

P
p̄−→ P

π̄ ↓ ↓ π

C(P)
p−→ M

The bundleP has a canonical connectionA ∈ Ω1(P, g) characterized by,

A(σA(x),u)(X) = Au(p̄∗X) (2)

for every connectionA on P, x ∈ M, u ∈ π−1(x), X ∈ T(σA(x),u)P, and whereσA : M →
C(P) is the section corresponding toA.

Remark 1. It can be shown (see[10]) that the bundle ¯p : P→ C(P) is isomorphic to
J1P → (J1P)/G and, under this identification, the canonical connectionA corresponds to
the structure form ofJ1P .

The canonical connection enjoys the following properties (e.g. see[10]):

(1) A is invariant under the natural action of the group AutP of automorphisms ofP.
(2) For every connectionA on P, we haveσ̄∗

A(A) = A, whereσA : P → P is defined by
σ̄A(u) = (σA(x), u), with x ∈ M, u ∈ π−1(x).

LetFbe the curvature ofA. If f ∈ IGk is a Weil polynomial of degreek for G, we define the
characteristic form associated tof as the 2k-form onC(P) defined bycf (F) = f (F, . . . ,F).
This form has the following properties:

(3) cf (F) is closed.
(4) cf (F) is invariant under the action of the group AutP onC(P).
(5) For every connectionA onP we haveσ∗

A(cf (F)) = f (FA, . . . , FA).

As a consequence of (3) and (5) and the fact that the space of connections is an
affine space, we obtain the well-known result of Chern-Weil theory that the cohomol-
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ogy class [f (FA, . . . , FA)] ∈ H2k(M) is independent of the connectionA, and is it called
the characteristic class associated tof. In other words, the mapσ∗

A is an inverse of
p∗ : H•(M) → H•(C(P)), and under this isomorphism the cohomology class ofcf (F)
corresponds to the characteristic class ofP associated tof (e.g. see[11,22]).

The space of connectionsA is an affine space modelled overΩ1(M,adP). Hence,
we have the identificationTAA � Ω1(M,adP) for everyA ∈ A. Also, C(P) is an affine
bundle modelled over the vector bundleT ∗M ⊗ adP . So, for everya ∈ Ω1(M,adP) ⊂
Γ (C(P), T ∗M ⊗ adP) we have a vertical vector fieldXa ∈ Xv(C(P)).

Lemma 2. For everya, b ∈ Ω1(M,adP), we have

iXaF = p∗a, iXb
iXaF = 0.

Proof. It follows from the formula (5.8) in[10]. �

If A0,A1 ∈ A, defineAt = (1 − t)A0 + tA1 anda = A1 − A0 ∈ Ω1(M,adP). The tan-
gent vector to the curveσAt (x) in C(P) isXa(σAt (x)) for anyx ∈ M, and hence we recover
the usual transgression formula

cf (FA1) − cf (FA0) = d

(∫ 1

0
σ∗
At

(iXacf (F)) dt

)
= d

(
k

∫ 1

0
f (a, FAt , . . . , FAt ) dt

)
.

Given a connectionA0 onP, p̄∗A0 is a connection onP. As p̄∗A0 andA are connections
on the same bundle, defininga0 = A− p̄∗A0 ∈ Ω1(C(P), g), At = (1 − t)p̄∗A0 + tA and

ηf (A0) = k

∫ 1

0
f (a0, FAt , . . . , FAt ) dt,

we havecf (F) − cf (Fp̄∗A0) = dηf (A0). If 2k > n, thencf (Fp̄∗A0) = p∗cf (FA0) = 0, and
hencecf (F) = dηf (A0).

3. Equivariant characteristic forms

First, we recall the definition of equivariant cohomology in the Cartan model (e.g. see
[5,19]). Suppose that we have a left action of a connected Lie groupG on a manifoldN, i.e.
a homomorphismρ : G→ Diff(N). We have an induced Lie algebra homomorphism

LieG→ X(N), X �→ XN = d

dt

∣∣∣∣
t=0

ρ(exp(−tX)).

Let ΩG(N) = (S•(LieG∗) ⊗ Ω•(N))G = P•(LieG,Ω•(N))G be the space ofG-invariant
polynomials on LieG with values inΩ•(N). We define the following graduation: deg(α) =
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2k + r if α ∈ P k(LieG,Ωr(N)). Hence the space ofG-equivariant differentialq-forms is

Ω
q

G(N) =
⊕

2k+r=q

(Pk(LieG,Ωr(N)))G.

Let dc : Ωq

G(N) → Ω
q+1
G (N) be the Cartan differential

(dcα)(X) = d(α(X)) − iXNα(X), ∀X ∈ LieG.

As is well known, onΩ•
G(N) we have (dc)2 = 0. Moreover, the equivariant cohomology (in

the Cartan model) ofN with respect of the action ofG is defined as the cohomology of this
complex, i.e.,

H
q

G(N) = ker(dc : Ωq

G(N) → Ω
q+1
G (N))

Im(dc : Ωq−1
G (N) → Ω

q

G(N))
.

Definition 3. Given a closed andG-invariant formω ∈ Ωq(M), an equivariant differential
formω# ∈ Ω

q

G(M) is said to be aG-equivariant extension ofω if dcω# = 0 andω#(0) = ω.

In general, there could be obstructions to the existence of equivariant extensions (e.g.,
see[24]) but, as we will see, the classical construction of equivariant characteristic classes
really provides canonical equivariant extensions for the forms we are dealing with.

Next, let us recall the relationship between equivariant cohomology and the cohomology
of the quotient space. If the action ofG onN is free andN/G is a manifold, thenN → N/G
is a principalG-bundle. LetA be a connection on this bundle. The following map is a
generalization of the Chern-Weil homomorphism:

ChWA : Ω•
G(N) → (Ω•(N))basic� Ω•

(
N

G

)
, α �→ (α(FA))hor,

whereβhor denotes the horizontal component ofβ ∈ Ω•(N) with respect to the connection
A. We have the following proposition.

Proposition 4. If α ∈ Ω•
G(N), thenChWA(dcα) = d(ChWA(α)).

Proof. We refer the reader to[5, Theorem 7.34]. �

Theorem5. The induced map in cohomologyChWA : H•
G(N) → H•(N/G) is independent

of the connection A chosen, and is denoted by

ChWN : H•
G(N) → H•

(
N

G

)
.
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Proof. The result quickly follows by working on the bundle of connections. We use the
notations introduced inSection 2by settingP = N, M = N/G and denoting byp : P →
M the quotient map. Letα ∈ Ω

q

G(P) be an equivariantq-form such thatdcα = 0. Recall
that p̄∗(α) belongs toΩq

G(P) as p̄ is a G-equivariant map. ByProposition 4, the form
ChWA(p̄∗α) ∈ Ω•(C(P)) is closed, and from the formula(2) we obtain

σ∗
A(ChWA(p̄∗α)) = ChWA(α).

Again the result follows as the space of connections is contractible.�

Remark 6. If G is compact and connected ChWN is an isomorphism (e.g. see[19]).

The definition of equivariant characteristic classes of Berline and Vergne (see[6,7,9]) can
be introduced as follows. Letπ : P → M a principalG-bundle and let us further assume
that a Lie groupG acts (on the left) onP by automorphisms of this bundle. LetA be a
connection onP, which isinvariant under the action ofG.

For everyf ∈ IGk theG-equivariant characteristic form associated tof andA, cf (FGA) ∈
Ω2k
G (M), is defined by

cf (FGA)(X) = f
(
FA − A(XP ), (k. . ., FA − A(XP )

)

=
k∑

i=1

(−1)k−i

(
k

i

)
f (FA,

(i. . ., FA,A(XP ), (k−i. . . , A(XP ))

for everyX ∈ LieG.

Proposition 7. We have

(1) cf (FGA) is aG-equivariant extension ofcf (FA).
(2) The equivariant cohomology classcGf (P) = [cf (FGA)] ∈ H2k

G (M) is independent of the
G-invariant connection A, and is called theG-equivariant cohomology class of P asso-
ciated to f.

Proof. See[9,7]. �

Applying the construction of equivariant characteristic forms to the bundleP→ C(P)
with the AutP-invariant connectionA, we obtain the AutP-equivariant characteristic form
cf (FAutP ) ∈ Ω2k

AutP (C(P)), with an AutP-equivariant extension ofcf (F). If G ⊂ AutP
is any subgroup of the automorphism group, we have the correspondingG-equivariant
characteristic form

cf (FG) = cf (FAutP )|LieG.

The following proposition easily follows from the formula(2).
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Proposition 8. If G acts onπ : P → M by automorphisms ofπ, and A is aG-invariant
connection on P, then we haveσ∗

A(cf (FG)) = cf (FGA).

Remark 9. In this way, we obtain the analogous situation to that of the ordinary char-
acteristic classes; see the last paragraph inSection 2. Moreover,Proposition 8provides
a very simple proof ofProposition 7(2), as the space ofG-invariant connections is an
affine subspace; more precisely, ifA is a G-invariant connection,σ∗

A is the inverse of
p∗ : H•

G(M) → H•
G(C(P)) (hencep∗ is an isomorphism). Under this isomorphism the

G-equivariant cohomology class ofcf (FG) corresponds to theG-equivariant characteris-
tic class associated tof. Moreover, as in the case of ordinary characteristic classes, the
equivariant characteristic forms contain more information than their corresponding charac-
teristic classes. For example, inSection 5we will use this forms in the caseG = GauP to
find equivariant extensions of the forms(1).

The analog of Proposition 5 for the equivariant characteristic classes, is the following
proposition.

Proposition 10. Assume thatG acts freely on P and M, and that the quotient bundle
πG : P/G→ M/G exists, then

ChWM(cGf (P)) = cf

(
P

G

)
.

Proof. We denote byqP : P → P/G,qM : M → M/G the projections. LetA1 a connection
on the principalG-bundleπG : P/G→ M/G, andA2 a connection in the principalG-bundle
M → M/G. Clearly A′

1 = q∗
PA1 is a G-invariant connection on the principalG-bundle

P → M, and for everyX ∈ LieG we haveA′
1(XP ) = 0. So, the equivariant characteristic

class associated toA′
1 andf is the basic formcf (FG

A′
1
) = cf (FA′

1
).

From the very definition of ChWA2, it is clear that

ChWA2(cf (FA′
1
)) = cf (FA1),

and hence the result follows.�

4. Forms inΓ (E) induced by forms in JrE

Let q : E → M be a locally trivial bundle over an oriented, connected, and compact
n-manifold without boundaryM. We denote byΓ (E) the space of global sections ofE, and
we assume that it is not empty. We considerΓ (E) as a differential manifold; for the details
of its infinite-dimensional structure, see[20]. For anys ∈ Γ (E) there is an identification
TsΓ (E) � Γ (M, s∗V (E)). We denote byJrE ther-jet bundle ofE, and by Proj(E) the group
of projectable diffeomorphisms ofE, i.e. φ ∈ Diff(E) such that there existφ ∈ Diff(M)
with q ◦ φ = φ ◦ q. We denote by Proj+(E) the subgroup of elementsφ ∈ Proj(E) such that
φ ∈ Diff +(M), the group of orientation preserving diffeomorphisms.
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We denote by proj(E) ⊂ X(E) the Lie algebra of projectable vector fields, which
can be considered as the Lie algebra of Proj(E). The group Proj(E) acts onΓ (E) by
(φ, s) �→ φΓ (E)(s) = φ ◦ s ◦ φ−1. At the Lie-algebra level, every projectable vector field
X ∈ proj(E) determines a vector fieldXΓ (E) ∈ X(Γ (E)) on Γ (E). Given φ ∈ Proj(E)
(resp.X ∈ proj(E)) we denote byφ(r) (resp.X(r)) its prolongation toJr(E). We recall
thatφ(r)(jrxs) = jrφ(x)(φΓ (E)(s)).

The evaluation map

evr : M × Γ (E) → JrE, (x, s) �→ jrxs

is equivariant with respect of the action of Proj(E) on M × Γ (E) andJrE. So, for any
X ∈ proj(E), denoting byX ∈ X(E) its projection toM, we have

evr∗(X,XΓ (E)) = X(r). (3)

We define a map

F : Ωn+k(JrE) → Ωk(Γ (E))

by the formula

F [α] =
∫
M

ev∗
r α ∈ Ωk(Γ (E)), (4)

where
∫
M

denotes the integration over the fiber ofM × Γ (E) → Γ (E). If α ∈ Ωk(JrE)
with k < n,we setF [α] = 0.

Proposition 11. For anyα ∈ Ωn+k(JrE), we have

(F [α])s(X1, . . . , Xk) =
∫
M

(jrs)∗(i
X

(r)
k

. . . i
X

(r)
1
α) (5)

for everys ∈ Γ (E), X1, . . . , Xk ∈ TsΓE � Γ (M, s∗V (E)).

Proof. The result follows from the definition ofF [α] and the formula(3) applied to
vertical vector fields. �

The following proposition follows from the definition ofF and the properties of the
integration over the fiber.

Proposition 12. For everyα ∈ Ωn+k(JrE), φ ∈ Proj+(E), andX ∈ proj(E) we have

(a) F [dα] = dF [α],
(b) F [(φ(r))∗α] = φ∗

Γ (E)F [α],
(c) F [iX(r)α] = iXΓ (E)F [α],
(d) F [LX(r)α] = LXΓ (E)F [α].

Remark 13. If α ∈ Ωn−1(JrE), the condition12(a) meansF [dα] = 0.
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Now, assume thatG is a subgroup of Proj+(E). If α ∈ Pq(LieG,Ωn+k(E)), the compo-
sition

LieG
α−→Ωn+k(JrE)

F−→Ωk(Γ (E))

defines an elementF [α] of Pq(LieG,Ωk(Γ (E))); that is, forX ∈ LieG we have

(F [α])(X) = F [α(X)].

By Proposition 12(b) if α isG-invariant,F [α] is alsoG-invariant, and so the mapF extends
to a map betweenG-equivariant differential forms

F : Ωn+k
G (JrE) → Ωk

G(Γ (E)).

Proposition 14. For everyα ∈ Ωn+k
G (JrE) we haveF [dcα] = dcF [α]. Hence, we have an

induced map in equivariant cohomologyF : Hn+k
G (JrE) → Hk

G(Γ (E)).

Proof. If α ∈ Ωn+k
G (JrE) andX ∈ LieG, then fromProposition 12we have

(F [dcα])(X) = F [dcα(X)] = F [d(α(X))] − F [iX(r)α(X)]

= dF [α(X)] − iXΓ (E)F [α(X)] = (dcF [α])(X). �

5. Applications

In this section we combine the results ofSections 3 and 4. As remarked in Section 1, in
Gauge theories GauP-invariant forms are specially interesting, so we focus on these forms.
In [11] it is proved that the space of GauP-invariant forms is generated by the forms of type
cf (F) ∧ p∗β, with f ∈ IGk andβ ∈ Ωr(M). We assume thatβ is closed and 2k + r ≥ n.

By applying the mapF to cf (F) ∧ p∗β we obtain

Cf,β = F [cf (F) ∧ p∗β] ∈ Ω2k+r−n(A).

By Proposition 12this form is closed and GauP-invariant.
TakingLemma 2into account, it is easy to obtain the expression ofCf,β. We have the

following proposition.

Proposition 15. Letq = 2k + r − n. For a1, . . . , aq ∈ Ω1(M,adP) we have:

(Cf,β)A(a1, . . . , aq) =
(
k

q

)∫
M

f (a1, . . . , aq, FA,
(n−k−r. . . , FA) ∧ β.
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By virtue of Proposition 7, the GauP-equivariant characteristic formcf (FGauP ) is an
equivariant extension ofcf (F). Also p∗β is a closed GauP-equivariant differential form,
because it is closed and basic. Socf (FGauP ) ∧ p∗β is a GauP-equivariant extension of
cf (F) ∧ p∗β. We thus obtain the following theorem.

Theorem 16. TheGauP-equivariant form

C#
f,β = F [cf (FGauP ) ∧ p∗β] ∈ Ω2k+r−n

GauP (A) (6)

is aGauP-equivariant extension ofCf,β.

We have thus found a canonical GauP-equivariant extension ofCf,β, as said in Section 1.
Let X ∈ gauP = Ω0(M,adP) � Ω0

Ad(P, g), and XP ∈ X(P) the vector field corre-
sponding to the action of GauP in P. We have

A(σA(x),u)(XP) = Au(p̄∗XP) = Au(XP ) = X(u).

So,A(XP) = p∗X, and hence

cf (FGauP )(X) = f
(
F− p∗X, (k. . .,F− p∗X

)
=

k∑
i=0

cif (F, X), (7)

wherecif (F, X) = (−1)i
(
k

i

)
f (F, . . .(k−i,F, p∗X, . . .(i, p∗X).

The conditiondccf (FGauP ) = 0 is equivalent to

dcf (F) = 0, dcif (F, X) = iXC(P)c
i−1
f (F, X), i = 1, . . . , k. (8)

Using(7) andProposition 15it is easy to obtain the expression forC#
f,β. In Example 19

of Section 5.2, we detail such expression in a simple case. Also, forf (X) = Tr(expX) we
obtain the equivariant forms defined in[21, Section 6]as a particular case.

5.1. Forms inA/Gau0P

Let Gau0P ⊂ GauP be the subgroup of gauge transformations acting as the identity on
the fiber over a fixed pointx0 ∈ M. Then Gau0P acts freely onA and the quotientA/Gau0P

is well defined (e.g. see[23,12]).
By virtue of Theorem 5, the Gau0P-equivariant differential formC#

f,β determines a
cohomology class

ChWA(C#
f,β) ∈ H2k+r−n

(
A

Gau0P

)
.

To obtain a representative of this class it is necessary a connection on the bundleA→
A/Gau0P . The construction of this connection is a standard fact in gauge theories (e.g. see
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[12]): given a Riemannian metricg in M there is a connection inA→ A/Gau0P given by
the decomposition

TAA � Ω1(M,adP) � Im(dA) ⊕ ker(d∗
A).

The space Im(dA) is the tangent space to the orbits, and ker(d∗
A) is the horizontal comple-

ment. The expression of its corresponding connection form is

A = GAd
∗
A, (9)

whereGA = (d∗
A ◦ dA)−1 is the Green function of the Laplacian

/0
A = d∗

A ◦ dA : Ω0(M,adP) → Ω0(M,adP).

We denote byF the curvature ofA.
Next, we relate our classes ChWA(C#

f,β) to the constructions in[3]. Consider the principal
G-bundleP ×A→ M ×A. The group Gau0P acts onP and onA. Taking the quotient,
we obtain a principalG-bundle

Q = P ×A
Gau0P

→ M ×
(
A

Gau0P

)
.

If f ∈ IGk and [β] ∈ Hr(M), we have a class

cf (Q) ∧ [β] ∈ H2k+r

(
M ×

(
A

Gau0P

))
.

Integrating overM we obtain the class

µf ([β]) =
∫
M

cf (Q) ∧ [β] ∈ H2k+r−n

(
A

Gau0P

)
.

Theorem 17. For everyf ∈ I G
k and every closedβ ∈ Ωr(M) with 2k + r ≥ n, we have

ChWA(C#
f,β) = µf ([β]).

Proof. The evaluation map extends to a morphism of principalG-bundles

P ×A ev−→ P

↓ ↓ π̄

M ×A ev−→ C(P)

whereev(u,A) = (σA(x), u) for u ∈ π−1(x). Hence,ev∗(A) is a connection onP ×A→
M ×A, ev∗(cf (F)) gives its characteristic classes, and ev∗(cf (FGau0P )), f ∈ IGk , are its
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Gau0P-equivariant characteristic forms. ByProposition 10these equivariant characteristic
forms determine the characteristic classes of the quotient bundleQ→ M × (A/Gau0P),
i.e., we have

ChWM×A(ev∗(cf (FGau0P ))) = cf (Q).

As the connection onM ×A→ M × (A/Gau0P) is given by the connection(9), the co-
homology classµf ([β]), is represented by the form(∫

M

cf (ev∗(F) − F) ∧ β

)
hor

. (10)

From(4) and(7) we have

C#
f,β(X) =

∫
M

ev∗(cf (FGau0P (X)) ∧ p∗β) =
∫
M

cf (ev∗(F) − X) ∧ β.

So ChWA(C#
f,β) is also represented by the form(10). �

Remark 18. The construction of the classesµf ([β]) appears in[3] in order to compute the
Chern character of the index of families of Dirac operators and to apply them to the study
of anomalies in gauge theories. These classes also appear in other constructions in gauge
theories, like the definition of Donaldson invariants (see[13]), Topological Quantum Field
Theory ([8,4]), etc.

It is remarkable that we obtain these classes only by studying GauP-invariant forms on
C(P) and its equivariant extensions.

5.2. Moment maps

Example 19. LetM be a surface, andG = U(k). If f (X) = (1/8π2)tr(X2),X ∈ g, then the
corresponding characteristic class onM vanishes by dimensional reasons, but the character-
istic form cf (F) ∈ Ω4(C(P)) does not. From our constructions, this form defines a closed
and GauP-invariant two-form onA, Cf = F [cf (F)]. By Proposition 15and formula(7)
for a, b ∈ Ω1(M,adP), andX ∈ gauP = Ω0(M,adP), we have

cf (F) = 1

8π2
tr(F ∧ F),

cf (FGauP )(X) = 1

8π2
tr(F ∧ F) − 1

4π2
tr(p∗X · F) + 1

8π2
tr((p∗X)2),

(Cf )A(a, b) = 1

4π2

∫
M

tr(a ∧ b),

(C#
f (X))A(a, b) = 1

4π2

∫
M

tr(a ∧ b) − 1

4π2

∫
M

tr(X · FA).
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Hence,Cf coincides with the natural symplectic structure onA defined in[1]. Moreover,
in the case of a two-form, it is equivalent to give an equivariant extension of the form and a
moment map (e.g. see[2]). HenceC#

f defines a canonical moment mapmfor this symplectic
structure, given by

m : A→ (gauP)∗, mA(X) = − 1

4π2

∫
M

tr(X · FA).

Under the pairing

Ω2(M,adP) × Ω0(M,adP) → R, (η,X) �→ 〈η,X〉 = − 1

4π2

∫
M

tr(X · η)

(11)

this moment map corresponds to the curvatureFA, and it thus coincides with that defined
in [1].

Also, we havem−1(0) = {A ∈ A : FA = 0}, and by symplectic reduction we obtain the
moduli space of flat connections, and our form gives rise to the symplectic structure on
this space.

More generally, let (M,σ) be a symplectic 2n-manifold. Then the form

1

(n − 1)!
cf (F) ∧ σn−1 ∈ Ω2n+2(C(P))

defines a symplectic structure onA, and the equivariant extension provides a moment map
for it, which, in particular, coincides with that obtained in[13, Proposition 6.5.8]and[21,
Section 3].

5.3. Chern–Simons terms

Suppose thatM has dimension 2k − 1 and f ∈ IGk . Then cf (F) ∈ Ω2k(C(P)) de-
fines a first order locally variational operator (see[14]). Let h : Ω• → Ω•(J1C(P)) de-
note the horizontalization operator. As we havecf (F) = dηf (A0), the formh(ηf (A0)) ∈
Ω2k−1(J1(C(P))), is a Lagrangian for this operator, and hence this operator is globally
variational.

We know thatcf (F) is GauP-invariant, butηf (A0) is not invariant, because it depends
on the connectionA0. However, by virtue of(8) for everyX ∈ gauP , we have

LXC(P)ηf (A0) = iXC(P)dηf
(A0) + diXC(P)ηf

(A0) = iXC(P)cf (F) + diXC(P)ηf
(A0)

= d(c1
f (F, X) + iXC(P)ηf

(A0)),

and henceLXC(P)ηf (A0) is exact. As it is shown in[18] this condition leads to a Noether
conservation law. In fact, the conserved current isJ(X) = h(c1

f (F, X)), because by the
results in[14] A is an extremal connection if and only ifσ∗

A(iY cf (F)) = 0, ∀Y ∈ X(C(P)),
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and in this case, for anyX ∈ gauP , we have

dσ∗
A(c1

f (F, X)) = σ∗
Ad(c1

f (F, X)) = σ∗
A(iXC(P)cf (F)) = 0.

More generally, iff ∈ IGk , the formβ ∈ Ωr(M) is closed, and dim(M) = 2k + r − 1, the
formcf (F) ∧ p∗β defines a first order globally variational operator with Lagrangian density
λ = h(ηf (A0)) ∧ p∗β and with conserved currentJ(X) = h(c1

f (F, X)) ∧ p∗β.
The formcf (F) defines a closed and GauP-invariant one-formF [cf (F)] on the space

of connectionsA. This form is also horizontal, because for everyX ∈ gauP we have

iXAF [cf (F)] = F [iXC(P)cf (F)] = F [dc1
f (X,F)] = 0.

So,F [cf (F)] projects to a closed one-formαf on the spaceA/Gau0P . We have

F [cf (F)] = F [dηf (A0)] = dF [ηf (A0)].

HenceF [cf (F)] is the exterior differential of the functionF [ηf (A0)] ∈ Ω0(A). It is easy
to see that the one-formαf ∈ Ω1(A/Gau0P) is exact if and only if the functionF [ηf (A0)]
is Gau0P-invariant. We have

LXAF [ηf (A0)] = F [LXC
ηf (A0)] = F [d(c1

f (F, X) + iXC
η
f
(A0))] = 0,

and so this function is invariant under the action of the connected component with the identity
in GauP. But in general it is not invariant under the action of the full group Gau0P (as it
is shown in the following example), and in this caseαf defines a non-trivial cohomology
class onA/Gau0P .

Example 20. Suppose thatG = SU(2),f = (1/4π2)det is the polynomial corresponding
to the second Chern class andM is a three-manifold. Then the bundleP is trivial P = M ×
SU(2),A ∼= Ω1(M, g) and GauP = C∞(M,SU(2)). IfA0 is the connection corresponding
to the product decomposition, thenηf (A0) is the classical Chern–Simons Lagrangian and
for anyA ∈ A we have

F [ηf (A0)]A =
∫
M

σ∗
A(ηf (A0)) = − 1

8π2

∫
M

(
A ∧ dA + 2

3
A ∧ A ∧ A

)
.

If ϕ : M → SU(2) is a gauge transformation, it is a classical result (see[8]) that

F [ηf (A0)]ϕ·A = F [ηf (A0)]A − S(ϕ),

whereS(ϕ) is the winding number of the mapϕ. As SU(2) is connected, every gauge
transformation is homotopic to an element of Gau0P . Hence there are elementsϕ ∈ Gau0P

with S(ϕ) �= 0, andF [ηf (A0)] is not Gau0P-invariant.
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6. Concluding remarks

1. The Berline–Vergne definition of equivariant characteristic classes supposes that aG-
invariant connection is given. Note however that, independently of the existence ofG-
invariant connections, theG-equivariant characteristic forms always exist onC(P) (since
the canonical connection isG-invariant), and the existence ofG-invariant connections is
needed only in order to obtainG-equivariant classes onM. We hope that our construction
could be useful in the study of equivariant characteristic classes for non-compact Lie
groups, where the existence of invariant connections is not guaranteed in general, and
the analysis is much more involved, e.g., see[17].

Moreover, inSection 5we have used GauP-equivariant characteristic forms. From the
classical point of view of equivariant characteristic classes this procedure is meaningless
as this group acts trivially onM and also there are no GauP-invariant connections.

2. The usefulness of the mapF lies in the fact that it provides a general procedure to obtain
results about (equivariant) differential forms and cohomology classes on the infinite
dimensional manifoldΓ (E) by working on a finite dimensional jet bundle. Note that,
as in this paper we only consider forms on the 0-jet bundle (that is, onE), it could be
thought that the consideration of jet bundles is unnecessary; but, for example in[15], we
study the analogous results in the case of Riemannian metrics, and in this case we need
to work with forms in the first jet bundle. In fact, there is a close relation between the
mapF and the variational bicomplex, that we will analyze in a forthcoming paper.
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J. 50 (1983) 539–549.
[8] D. Birmingham, M. Blau, M. Rakowski, G. Thompson, Topological field theory, Phys. Rep. 209 (1991)

129–340.
[9] R. Bott, L. Tum, Equivariant Characteristic Classes in the Cartan Model, Geometry, Analysis and Applications

(Varanasi, 2000), World Scientific Publishing, River Edge, NJ, 2001, pp. 3–20.
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